How Informative Are Spatial CA3 Representations Established by the Dentate Gyrus?
نویسندگان
چکیده
In the mammalian hippocampus, the dentate gyrus (DG) is characterized by sparse and powerful unidirectional projections to CA3 pyramidal cells, the so-called mossy fibers. Mossy fiber synapses appear to duplicate, in terms of the information they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the dentate gyrus and to CA3. Computational models of episodic memory have hypothesized that the function of the mossy fibers is to enforce a new, well-separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference produced by the traces of older memories already stored on CA3 recurrent collateral connections. Can this hypothesis apply also to spatial representations, as described by recent neurophysiological recordings in rats? To address this issue quantitatively, we estimate the amount of information DG can impart on a new CA3 pattern of spatial activity, using both mathematical analysis and computer simulations of a simplified model. We confirm that, also in the spatial case, the observed sparse connectivity and level of activity are most appropriate for driving memory storage-and not to initiate retrieval. Surprisingly, the model also indicates that even when DG codes just for space, much of the information it passes on to CA3 acquires a non-spatial and episodic character, akin to that of a random number generator. It is suggested that further hippocampal processing is required to make full spatial use of DG inputs.
منابع مشابه
A computational theory of hippocampal function, and tests of the theory: new developments.
The aims of the paper are to update Rolls' quantitative computational theory of hippocampal function and the predictions it makes about the different subregions (dentate gyrus, CA3 and CA1), and to examine behavioral and electrophysiological data that address the functions of the hippocampus and particularly its subregions. Based on the computational proposal that the dentate gyrus produces spa...
متن کاملThe spatial representations acquired in CA3 by self-organizing recurrent connections
Neural computation models have hypothesized that the dentate gyrus (DG) drives the storage in the CA3 network of new memories including, e.g., in rodents, spatial memories. Can recurrent CA3 connections self-organize, during storage, and form what have been called continuous attractors, or charts-so that they express spatial information later, when aside from a partial cue the information may n...
متن کاملAn attractor network in the hippocampus: theory and neurophysiology.
A quantitative computational theory of the operation of the CA3 system as an attractor or autoassociation network is described. Based on the proposal that CA3-CA3 autoassociative networks are important for episodic or event memory in which space is a component (place in rodents and spatial view in primates), it has been shown behaviorally that the CA3 supports spatial rapid one-trial learning a...
متن کاملA computational theory of hippocampal function, and empirical tests of the theory.
The main aim of the paper is to present an up-to-date computational theory of hippocampal function and the predictions it makes about the different subregions (dentate gyrus, CA3 and CA1), and to examine behavioral and electrophysiological data that address the functions of the hippocampus and particularly its subregions. Based on the computational proposal that the dentate gyrus produces spars...
متن کاملVolumetric Study Of Dentate Gyrus And CA3 Region In Hippocampus Of Streptozotocin-Induced Diabetic Rats: Effect Of Insulin And Ascorbic Acid
Background and Objectives: Hippocampal volume reduction has been reported in diabetes mellitus type 1. It is believed that hyperglycemia and oxidative stress mediate neuropathological changes in hippocampal neurons. In this study we aimed to study the effect of insulin and an antioxidant like ascorbic acid on preventing volume changes of dentate gyrus and CA3 region of hippocampus. Material...
متن کامل